Single-Channel Properties Support a Potential Contribution of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and If to Cardiac Arrhythmias
نویسنده
چکیده
Background—The pacemaker current If is present in atrial and ventricular myocytes. However, it remains controversial whether If overexpression in diseased states might play a role for arrhythmogenesis, because first If activation in whole-cell recordings hardly overlapped the diastolic voltage of working myocardium. Methods and Results—To obtain further insight into IHCN and If properties, we provide for the first time detailed single-channel analysis of heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) isoforms and native human If. HCN subtypes differed significantly in single-channel amplitude, conductance, and activation kinetics. Interestingly, threshold potentials of HCN isoforms were more positive than would have been expected from whole-cell measurements. Single-channel properties of cells cotransfected with HCN2 and HCN4 were distinct from cells expressing HCN2 or HCN4 alone, demonstrating that different HCN isoforms can influence current properties of a single HCN channel complex, thus providing direct functional evidence for HCN heteromerization. Pooled data of homomeric and heteromeric HCN channels and of native If extrapolated from maximum likelihood fits indicated a multistate gating scheme comprising 5 closedand 4 open-channel states. Single-channel characteristics of If in human atrial myocytes closely resembled those of HCN4 or HCN2 HCN4, supporting the hypothesis that native If channels in atrial myocardium are heteromeric complexes composed of HCN4 and/or HCN2. Most interestingly, half-maximal activation of single-channel atrial If ( 68.3 4.9 mV; k 9.9 1.5; n 8) was well within the diastolic voltage range of human atrial myocardium. Conclusions—These observations support a potential contribution of HCN/If to the arrhythmogenesis of working myocardium under pathological conditions. (Circulation. 2005;111:399-404.)
منابع مشابه
Letter regarding article by Michels et al, "Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias".
BACKGROUND The pacemaker current I(f) is present in atrial and ventricular myocytes. However, it remains controversial whether I(f) overexpression in diseased states might play a role for arrhythmogenesis, because first I(f) activation in whole-cell recordings hardly overlapped the diastolic voltage of working myocardium. METHODS AND RESULTS To obtain further insight into I(HCN) and I(f) prop...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملDirect evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations.
AIMS The hyperpolarization-activated cyclic nucleotide-gated (HCN) current I(f)/I(HCN) is generally thought to be carried by Na(+) and K(+) under physiological conditions. Recently, Ca(2+) influx through HCN channels has indirectly been postulated. However, direct functional evidence of Ca(2+) permeation through I(f)/I(HCN) is still lacking. METHODS AND RESULTS To possibly provide direct evid...
متن کاملA leucine zipper motif essential for gating of hyperpolarization-activated channels.
BACKGROUND It is poorly understood how hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) function. RESULTS We have identified a leucine zipper in the S5 segment of HCNs, regulating hyperpolarization-activated and instantaneous current components. CONCLUSION The leucine zipper is essential for HCN channel gating. SIGNIFICANCE The identification and functional characteriza...
متن کامل